
XML is not Integration 

Copyright © 2002 
Jonathan C. Arneault 

Web Services has been much advertised as a 
standards based mechanism for cutting IT 
infrastructure costs, reducing application 
complexity, and enabling IT to fulfill the ever 
increasing needs of the businesses it serves.  
Many industry pundits claim that Web Services 
can accomplish these great feats because they 
will finally create a common language for all 
systems, enabling integration beyond anything 
that has ever been imagined before. 
 
Well that’s just hooey. 
 
While XML is a promising development, it is 
nothing more than a structured file format.  
Those of us who have been in IT for any length 
of time (i.e., before 1995), know that common 
file formats are a grand service to understanding 
the way to get data into and out of systems, but it 
doesn’t make the hard job of understanding the 
interfaces, complex applications, and 
architecture of those data containing systems any 
easier.  XML doesn’t address any of these issues. 
 
Don’t get me wrong.  I’ve been a proponent of 
XML since 1998.  XML is a magnificent 
approach to handling data, both within an 
application and between applications.  Defining 
the data element within a self defining structure 
is tremendously beneficial to the developer, the 
DBA, and the parties responsible for 
troubleshooting when things go awry.  It doesn’t, 
however, answer the need for pre and post op 
edits on the data contained in it.  It doesn’t 
address the mapping of non-direct field 
definitions between systems, even when DTD’s 
(the “map” of the XML file) are well defined.   
 
XML’s main value comes from the ability to 
easily parse the data contained, and to then 
manipulate it so that it can be used within the IT 
ecosystem of the company or companies that use 
its data.  It is also an excellent mechanism for 
handling information from a very high level 
when you are not sure what format external 
systems will need when requesting information 
from you (i.e. – make them do the investigation 
and coding to transpose the data). 
 
Integration, as defined from a business 
perspective, is achieved when systems 
interoperate in such a way that the work of 
information processing, mining and 
extrapolation is done by the system best suited to 
accomplish it, and the results of these actions is 
shared with those systems that need the 

information, but have not produced it 
themselves. 
 
That heady statement can be boiled down into 
three functional elements.  Integration of systems 
is basically made up of messaging, data 
transformation and process flow management 
 
Web Services, through HTTP and XML, attempt 
to accomplish messaging and data 
transformation, but leave the job half done.  
What Web Services accomplish, is data 
“exposure”, not integration.  In order to 
transform data through Web Services, complex 
coding and deep understanding of the individual 
points of integration have to be understood by all 
parties.  Only once the producing and consuming 
system’s owners understand all of the others, can 
the effort of coding the ties between systems 
begin.  This is hardly a paradigm for increased 
productivity. 
 
Companies such as IBM, Sun Microsystems 
Oracle, and even Microsoft have created a 
variety of tools to make the “hard part in the 
middle” somewhat easier, while pure EAI 
vendors such as Vitria and WebMethods seek to 
create monolithic platforms wherein the 
integration code is developed and managed.   
These approaches follow the track of a defined 
EAI methodology similar to the App Server 
market of the late nineties, with the twist of 
using XML as the central way of defining data. 
 
What is more useful, is an approach that has at 
its heart, a system that understands the systems 
which need to intercommunicate.  More than just 
a data routing engine, such systems understand 
the complex edits of the systems they 
interoperate with, and provide a seamless 
transformation of the transactional and batch 
data feeds between systems that don’t share 
common interfaces or formats.   
 
SeeBeyond, Mercator Software, and BEA 
Systems are all aimed at this newly emerging 
architecture.  Leaving traditional EAI 
mechanisms behind as “growth pains”, the 
concept of an Integration Hub is rapidly growing 
in the market place.  Through such an 
architecture, programmatic methods of dealing 
with external data and transactions take a back 
seat to core business functions and data 
transformation.  Strangely, the value of 
messaging system investments (such as Tibco 
Rendezvous and WebsphereMQ) is increased by 



XML is not Integration 

Copyright © 2002 
Jonathan C. Arneault 

decreasing the value of the work done by them, 
and transferring it to the integration hub.  The 
integration hub greatly reduces the complexity of 
integration with the applications and databases 
that make up the company IT ecosystem, while 
the messaging hub acts as the mechanism to 
ensure all transactions get to their intended 
destination.  What is most striking, is that 
integration hub architectures work best when the 
messaging system is not built in, but an external 
system altogether. 
 
Through such a three tier architecture, XML 
interfaces become simply another, but not the 
core means of dealing with data.  XML is then 
fed to those systems whose optimal input is 
tagged data structures through an integration 
hub.  To those legacy (and modern) systems 
which operate with data in some format other 
than XML (such as COBOL Copybook, ANSI 
SQL, and structured transaction and file 
formats), the integration hub speaks to them in 
their native language. 
 
A new paradigm in integration is rapidly 
emerging, based on an integration hub 
architecture.  XML is a welcome player in this 
space, but XML is not integration. 


